
Clicker Questions
February 27

The syllabus says we will have an exam next Thursday (March 5).
Does that seem like a good idea?

A. That's a splendid idea.
B. I would much rather have it on Tuesday, March 10.
C. Let's have exams both days! I love exams!
D. Personally, I'd rather not have an exam at all
E. Exam? We have exams in this class?????

How would you write (count a lat), which counts the number of times
atom a appears in lat, with fold?

A. (define count (lambda (a lat)
(foldl (lambda (x y) (if (eq? x a) (+ y 1) y)) 0 lat)))

B. (define count (lambda (a lat)
(foldr (lambda (x y) (if (eq? x a) (+ y 1) x)) 0 lat)))

C. (define count (lambda (a lat)
(foldr (lambda (x y) (if (eq? x a) x y)) 0 lat)))

D. (define count (lambda (a lat)
(foldr (lambda (x y) (if (eq? x y) (+ y 1) y)) a lat)))

A. Answer A:
(define count (lambda (a lat)

(foldl (lambda (x y) (if (eq? x a) (+ y 1) y)) 0 lat)))

I want to write a function sum2dVectors that adds the first elements of
a bunch of pairs and then adds the second elements, so
(sum2dVectors '(3 4) '(1 2) '(2 3)) returns '(6 9). The start is easy:
(define sum2dVectors (lambda pairs

(cond
[(null? (cdr pairs)) (car pairs)]
[else (let ([a (car (car pairs))]

[b (cadr (car pairs))]
[v ; THIS SHOULD BE THE RESULT OF

sum2dVectors RECURSING ON ALL BUT ITS
FIRST ARGUMENT

(list (+ a (car v)) (+ b (cadr v))))])))

In the definition
(define sum2dVectors (lambda pairs ...

how does sum2dVectors recurse on all but its first argument

A. (sum2dVectors (cdr (list pairs)))
B. (sum2dVectors (cdr pairs))
C. (apply sum2dVectors (cdr pairs))
D. (apply (sum2dVectors (cdr pairs)))

Answer C: (apply sum2dVectors (cdr pairs))

How would you write sum2dVectors with foldr??
A.I wouldn't.

B.(define sum2dVectors (lambda pairs
(foldr (lambda (x y) (list (+ (car x) (car y)) (+ (cadr x) (cadr y))))

(list 0 0) pairs)))

C. (define sum2dVectors (lambda pairs
(foldr (lambda (x y) (+ x y)) (list 0 0) pairs)))

D. (define sum2dVectors (lambda pairs
(foldr (lambda (x y) (apply + x y)) (list 0 0) pairs)))

Answer B:
A.(define sum2dVectors (lambda pairs

(foldr (lambda (x y) (list (+ (car x) (car y)) (+ (cadr x) (cadr y))))
(list 0 0) pairs)))

How would you write sum2dVectors with map and apply??
A.I wouldn't.
B.(define sum2dVectors (lambda pairs

(list (apply + (map car pairs)) (apply + (map cadr pairs)))
C. (define sum2dVectors (lambda pairs

(apply + (map list pairs))
D. (define sum2dVectors (lambda pairs

(apply list (map + pairs))

Answer B:
(define sum2dVectors (lambda pairs

(list (apply + (map car pairs)) (apply + (map cadr pairs)))

Here's a way to do that in general
(define sumVectors (lambda vecs

(map (lambda (p) (apply + p)) (apply map list vecs))))

For example (sumVectors '(1 2 3) '(4 5 6) '(7 8 9)) returns (12 15 18),
(sumVectors '(1 2) '(3 4)) is (4 6) and so forth.

